文章编号:0258-7025(2002)03-0227-03

ErCa₄O(BO₃), 晶体的光谱分析

江怀东,王继扬,宋仁波,胡小波,刘 宏,滕 冰,张承乾 (山东大学晶体材料国家重点实验室,山东济南 250100)

提要 采用 Czochralski 法生长了均匀透明的 ErCa₄ (I BO₃) (简称 ECOB)晶体 测量了其室温吸收谱 ,并与 0.1 mol 的 ErCl₃ 溶液的室温吸收谱进行了比较。根据 Judd-Ofelt 理论 ,拟合出唯像强度参数 : $\Omega_2 = 1.673 \times 10^{-20}$ cm² , $\Omega_4 = 1.356 \times 10^{-20}$ cm² , $\Omega_6 = 0.156 \times 10^{-20}$ cm² 。计算了各能级的辐射跃迁几率 $A_{J,J}$,振子强度 $f_{J,J}$ 辐射寿命 τ 荧光分 支比 β_J 等 ,并根据这些光学参量 ,讨论了该晶体的部分性能和应用前景。 关键词 ECOB 晶体 ,光谱参数 ,Judd-Ofelt 理论 中图分类号 TN 244 ;0 734 文献标识码 A

Spectral Properties of ErCa₄O(BO₃), Crystal

JIANG Huai-dong, WANG Ji-yang, SONG Ren-bo, HU Xiao-bo,

LIU Hong , TENG Bing , ZHANG Cheng-qian

(State Key Lab. of Crystal Materials , Shandong University , Jinan 250100)

Abstract The transparent and homogeneous $\text{ErCa}_4\text{O}(\text{BO}_3)_5(\text{ECOB})$ crystal is grown by Czochralski method. The room temperature absorption spectra have been measured and compared with that of 0.1 mol ErCl₃ solution. According to Judd-Ofelt theory, the spectral strength parameters : $\Omega_2 = 1.673 \times 10^{-20} \text{ cm}^2$, $\Omega_4 = 1.356 \times 10^{-20} \text{ cm}^2$, $\Omega_6 = 0.156 \times 10^{-20} \text{ cm}^2$ of Er^{3+1} ion have been fitted. The radiative transition probabilities $A_{J,J}$, oscillator strengths $f_{J,J}$, radiative lifetime τ and the branching ratio β_J have been calculated. From these parameters, the properties and applications were discussed.

Key words ECOB crystal , spectrum parameters , Judd-Ofelt theory

随着新材料的发展,光谱学逐渐成为认识材料 结构与性能关系的强有力的手段,为新材料技术提 供理论依据和实际指导。RCa4Q BO3)(R 为稀土元 素)系列晶体是近年来发展起来的一种新型非线性 光学晶体,具有很大应用潜力,一方面可以作为非线 性材料使用,另一方面又可以作为激光晶体使用,同 时它们还是继NYAB之后出现的一种具有实际应用 价值的自倍频晶体,一直受到人们很大关注¹¹。 ECOB 晶体便是其中一种,它具有较大的非线性光 学系数,抗光伤阈值高,是同成分熔化化合物,可用 提拉法进行生长,较易获得大尺寸高质量的单晶,晶 体化学稳定性好,不易潮解,硬度大,易加工。

1 实 验

采用 CaCO₃, B₂O₃, Er₂O₃(纯度均为 99.99%)为 原料,按化学计量比称取,并在滚料机中混匀,压块, 然后放入白金坩埚中,在 1200℃左右灼烧 10 h。将 烧结好的多晶料置于铱坩埚中,处于氮气气氛下在 单晶炉中用提拉法生长,晶体转速为 25 r/min,提拉 速度为 1 mm/h,得到无宏观缺陷均匀透明的晶体。 实验所采用的样品为沿垂直于 b 方向切割,厚度为 2.0 mm 经光学抛光的晶片。

2 结果与讨论

利用日立-340 分光光度计,测定了 ECOB 晶体

收稿日期 2000-12-05; 收到修改稿日期 2001-02-22

基金项目 国家重点基础研究规划及国家自然科学基金(59823003)资助项目。

作者简介 江怀东(1975.10—)男 山东大学晶体材料国家重点实验室 博士研究生 "E-mail ihd@icmsdu.edu.cn

的室温吸收谱,吸收光谱如图 1,图 2 所示,波长范 围从 190 nm 到 900 nm。同时还作了 0.1 mol 的 Er^{3+} 溶液的室温吸收谱。在 ECOB 晶体中, Er^{3+} 主要有 8 个吸收谱带,14 个光谱支项。其中有两个最主要的 吸收峰,峰值在 382 nm 和 532 nm 处,分别对应从基 态 ${}^{4}I_{15/2}$ 向激发态 ${}^{4}G_{11/2}$ 和 ${}^{2}H_{11/2}$ 的跃迁。

图 1 0.1 mol ErCl₃ 溶液中 Er³⁺离子的吸收光谱

Fig.1 Absorption spectra of the free Er³⁺ ion in an HCl solution of 0.1 mol in a wavelength range from 190 nm to 900 nm

图 2 ECOB 晶体中 Er3+ 离子的吸收光谱

Fig.2 Absorption spectra of the ${\rm Er}^{3+}$ ion in the crystalline lattice of the ECOB in a wavelength range from 190 nm to 900 nm

通过对 Er³⁺ 在溶液中以及在晶体中所测量的 室温吸收谱的比较 发现两个吸收谱形基本相同 这 是由于 Er³⁺ 离子 4*f* 电子受到屏蔽作用 ,其特定的能 级结构受晶体场的影响较小 ,致使在不同基质中 Er³⁺离子的发射或吸收波长一般变化不大。

两谱图最大的区别在于,溶液中 Er³⁺在 382 nm 附近的强吸收峰是单峰,而在晶体的室温吸收谱上 却分裂为 2 重峰,且两个峰高几乎相同。这是由于 晶体场作用产生的 Stark 能级分裂(即处于较低对称 性的配位场中的 Er³⁺离子,其光谱支项⁴G_{11/2}的 Stark 分裂造成的),而并非离子的本征跃迁。同时 由于 Kramers 简并,故 Er³⁺能态的 Stark 劈裂比期望 值(2J+1)/2要少。

3 晶体光谱参数的计算

根据 Judd-Ofelt 理论^[23]利用公式 1)计算出晶体中 Er³⁺离子的吸收谱线强度

$$S_{\exp}(J - J') = \frac{3ch(2J + 1)}{8\pi^3 d^2 N} \cdot \frac{9n}{(n^2 + 2)^2} \cdot \frac{2.3}{L\overline{\lambda}} \int A(\lambda) d\lambda \qquad (1)$$

式中 e 为电子的电量 ,c 为真空中的光速 ,h 为普朗 克常数 ,L 和 N 分别为样品厚度和晶体中 Er^{3+} 离子 的浓度 , $\overline{\lambda}$ 为跃迁平均波长 ,J 和 J' 为跃迁初态和 末态的总量子数 ,A 为吸光度 ,n 为基质晶体在该波 长的折射率 ,其中 n 由 V 型棱镜法测量。我们测量 了其在氦灯、汞灯、氢灯和钠灯七条谱线下的折射 率 ,按照 Sellmeier 公式

$$n^{2} = A + \frac{B}{(\lambda^{2} - C)} - D \cdot \lambda^{2}$$

用最小二乘法拟合了晶体折射率色散参数,其中 A 为 2.8960, B 为 0.02387, C 为 0.01454, D 为 0.1075。 利用公式(2)计算其吸收截面

$$\sigma_a = \frac{1}{NL} \ln (I_0 / I) \qquad (2)$$

式中 I_0 和I分别为入射光和透射光的强度。

另外 理论谱线强度可表示为

$$S(J \rightarrow J') = \sum_{\lambda = 2} \sum_{A \in A} \Omega_{\lambda} \times | 4f^{n}\psi , J || U^{(\lambda)} || 4f^{n}\psi' , J' |^{2}$$
(3)

式中3个参数 Ω_{λ} 与J无关,只含晶体场参数,故可作为光谱计算中不同基质的可调节参量。 $\parallel U^{(\lambda)} \parallel$ 为约化矩阵元,本文采用文献 4 1中之值。

由计算出的吸收谱线强度及公式(3),用最小二 乘法拟合出光谱的晶体场调节参数 $\Omega_2 = 1.673 \times 10^{-20} \text{ cm}^2$, $\Omega_4 = 1.356 \times 10^{-20} \text{ cm}^2$, $\Omega_6 = 0.156 \times 10^{-20} \text{ cm}^2$, 数据拟合的方差为 2.559 × 10⁻²¹。晶体 中不同波长的吸收截面和计算的谱线强度如表 1。

Judd 和 Ofelt 推导出了电偶极近似模式的振子 强度 $f_{I,I}$ 的表达式

$$f_{J,J'} = \frac{8\pi^2 mc}{3h(2J+1)\bar{\lambda}} \frac{(n^2+2)^2}{9n} \sum_{\lambda=2AB} \Omega_{\lambda} \cdot |4f'(s,l,J)|| U^{(\lambda)} ||4f'(s',l',J')|^2$$

$$(4)$$

表1 ECOB 晶体的光谱参数

Transition final state , $4f^{t}\psi'j'$	Spectrum band Δλ /nm	Central wavelength , $\overline{\lambda}$	α_b	$S_{\text{exp}}(J \rightarrow J')$ /×10 ⁻²⁰ cm ²	$S_{ca}(J \rightarrow J')$ /×10 ⁻²⁰ cm ²	$\sigma_{abs}(\lambda)$ /×10 ⁻²⁰ cm ²
${}^{2}I_{13/2}$ ${}^{4}L_{17/2}$ ${}^{2}I_{11/2}$ ${}^{4}D_{7/2}$	223.5→269.0	256.5	1.2040	1.5468	1.3886	0.2987
${}^{2}G_{7/2}$, ${}^{4}G_{9/2}$ ${}^{2}K_{15/2}$, ${}^{4}G_{11/2}$	341.5 → 393.5	382	6.0000	2.8197	2.7106	1.4888
$^{2}H_{9/2}$	395.5 → 421.5	407	0.4899	0.1443	0.0609	0.1216
${}^{4}F_{7/2}$	467.5 → 503.5	487	0.6963	0.3721	0.2970	0.1728
${}^{2}H_{11/2}$	503.5 → 541.5	523	0.6736	1.5936	1.7657	0.6634
⁴ S _{3/2}	541.5 → 567.5	546.5	0.5503	0.2049	0.0345	0.1365
${}^4F_{9/2}$	625.5 → 689.5	654	0.6947	0.4338	0.7980	0.1724
⁴ Io 2	777 5→829 5	794 5	0 2325	0.0879	0.2365	0.0577

Table 1 Line intensity of the absorption spectrum of ECOB

表 2 ECOB 晶体中² $H_{9/2}$ 和⁴ $S_{3/2}$ 的光谱参数

Table 2 Luminescence parameters of ECOB for the substable ${}^{2}H_{9/2}$ and ${}^{4}S_{3/2}$ states

Radiation	Radiation	$f_{\rm cal}(J'' \rightarrow J')$	$A(J'' \rightarrow J')$	$\Sigma(J'' \rightarrow J')$	$ au_{ m rad}$	$\beta_{J'}$
transition	wavelength/nm	$/ \times 10^{-6}$	/s ⁻¹	$/ \times 10^{-18}$ cm	$/\mu s$	1%
$^{2}H_{9/2} \rightarrow ^{4}I_{9/2}$	840	0.4247	117.2	0.3754		3.1
\rightarrow ⁴ $I_{11/2}$	699	1.7975	720.8	1.5892	266 0	19.2
\rightarrow ⁴ $I_{13/2}$	554	2.2258	1437.0	1.9678	200.0	38.2
\rightarrow ⁴ $I_{15/2}$	410	1.2285	1484.8	1.0861		39.5
${}^4S_{3/2} \rightarrow {}^4I_{9/2}$	1657	0.3428	23.9	0.3031		8.5
\rightarrow ⁴ $I_{11/2}$	1211	0.2081	27.4	0.1840	2550 (9.7
\rightarrow ⁴ $I_{13/2}$	841	0.0626	17.2	0.0553	3330.0	6.1
\rightarrow ⁴ $I_{15/2}$	544	0.3179	213.1	0.2811		75.7

式中 *m*,*h*分别为电子质量和普朗克常数,*n*为晶体在该波长的折射率。

振子强度 $f_{J,J'}$,自发辐射跃迁几率 $A_{J,J'}$ 积分发 射截面 Σ 辐射寿命 τ_{rad} 及荧光分支比 $\beta_{J'}$ 之间关系 如下

$$A_{J,J'} = \frac{8\pi^2 e^2 n^2}{mc\lambda^2} f_{J,J'}$$
 (5)

$$\tau_{\rm rad} = \frac{1}{\sum\limits_{I'} A(J'' \to J')}$$
(6)

$$\beta_{J'} = \frac{A(J'' \to J')}{\sum_{J'} A(J'' \to J')}$$
(7)

$$\sum_{J'} A(J'' \to J') = \frac{\overline{\lambda}^2}{8\pi c n^2} A(J'' \to J') \quad (8)$$

通过以上公式计算的如表 2 所示。其中 ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ 跃迁的荧光分支比为 75.7%。

通过室温吸收谱及计算所得到的光谱参数分析 可以看出:在 ECOB 晶体中, Er³⁺离子的光谱支项 ⁴ G_{11/2}由于晶体场作用而产生 Stark 分裂, 辐射跃迁 发生在 Stark 能级之间,光谱线的数目增多;同时具 有奇数电子的 Er³⁺离子产生了 Kramers 简并,故能 级分裂数目少。

另外 , ${\rm Er}^{3+}$ 离子是稀土离子中激光通道最多的 离子 ,可产生激光输出的通道多。根据具有大的振 子强度与发射截面的跃迁可产生激光输出 ,从表 2 可看出 ECOB 晶体中有几个通道的积分发射截面大 于 10⁻¹⁸ cm ,其跃迁可能产生激光发射。同时晶体 ${}^{4}S_{3/2}$ 能级寿命长 , ${\rm I}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ 的荧光分支也较 大 ,这表明在晶体中容易实现 ${}^{4}S_{3/2} \rightarrow {}^{4}I_{15/2}$ 通道的激 光运转 ,故它在激光器件等方面具有潜在价值。

参考文献

- 1 M. Iwai, T. Kobayashi, H. Furuya *et al.*. Crystal growth and optical characterization of rare-earth (Re) calcium oxyborate ReCa₄O(BO₃)₈(Re = Y or Gd) as new nonlinear optical materials [J]. Jpn. J. Appl. Phys., 1997, **36**(Part 2, No. 3A): 1.276 ~ 1.279
- 2 Zhang Siyuan, Bi Xianzhang. Spetral Theory of Rare Earth [M]. Changchun: Jilin Science and Technology Press, 1991 (in Chinese)
- 3 Wu Guangzhao. Judd-Ofelt model and application [J]. Luminescence and Display(发光与显示),1980,431~(in Chinese)
- 4 A. A. Kaminskii. Laser Crystal [M]. Berlin, Heidelberg, Gemany : Springer-Verlag, 1981. 149